Reg. No.

Third Semester M.Sc. Degree Examination, December 2018 CHEMISTRY (CBCS: 2016 – 17 Syllabus) (New Syllabus) **Coordination Chemistry**

Time: 3 Hours

Note : 1) Answer all questions in Part – A and any four full questions from Part – B.

2) Figures to the **right** indicate marks.

PART – A

1. Answer all questions.

- a) Find the ground term of the configurations $3d^5$ of Mn⁺² and $3d^3$ of Cr³⁺.
- b) Account for the fact that the nature of the intensely coloured $KMnO_4$ and CrO₄^{2−}.
- c) Distinguish between intramolecular and intermolecular photo oxidation-reduction reactions.
- d) Calculate the magnetic moments of manganese (III) in both strong and weak octahedral fields.
- e) Give the meaning of the terms magnetic susceptibility and molar susceptibility.
- f) The free sulphate ion shows two IR active bands at 1104 and 613 cm^{-1} , but in complex $[Co(NH_3)_5SO_4]Br$, each band is split into two peaks. Why?
- g) Design two step synthesis of *cis* and *trans* [Pt(NH₃)₂Cl₂] using *trans*effect.
- h) The ammonia molecule is replaced by ethylenediamine in $[Co(NH_3)_5Cl]^{2+}$ complex ion, the rate of equation of the complex is decreased. Why?
- i) What is the preferred mechanism of substitution reactions of octahedral coordination compounds?

(9×2=18)

Max. Marks: 70

PART – B

Answer any four full questions:

- 2. a) State and explain Laporte orbital selection rule and spin selection rule.
 - b) Explain, why an electronic transition for high spin $[Mn(H_2O)_6]^{2+}$ is spin forbidden, but for $[Co(H_2O)_6]^{2+}$ is spin allowed.
 - c) Draw the Tanabe-Sugano diagram for [Ni(OH₂)₆]²⁺ and calculate ∆₀ and B for the same complex ion (Given absorption at 8500, 15400 and 26000 cm⁻¹).
 (4+4+5=13)
- 3. a) Explain the mechanism of photoredox reactions.
 - b) What are charge transfer transitions ? How they are different from d-d transitions ?
 - c) Explain solar energy conversion by taking [Ru(bipy)₃]^{2+/3+} complex as an example. Discuss its applications. (4+4+5=13)
- 4. a) Calculate a value for μ_{eff} for $[Ni(H_2O)_6]^{2+}$ taking into account spin-orbit coupling (Given $\lambda = -315$ cm⁻¹ and $\Delta_0 = 8500$ cm⁻¹).
 - b) Write briefly on magnetic properties of lanthanides and actinides.
 - c) Indicate the changes that occur in the IR spectra of carbonate and perchlorate groups upon complexation. (4+4+5=13)
- 5. a) Discuss the Mossbauer spectra of K_3 [Fe(CN)₆], Na₂[Fe(CN)₅NO], [Fe(CN)₆]⁴⁻ and [Fe(CN)₅NH₃]³⁻.
 - b) Interpret the essential features of the EPR spectrum of bis-salicylaldimine copper (II) complex.
 - c) The CO stretching frequencies for Ni $(CO)_4$, $Co(CO)_4^-$ and Fe $(CO)_4^{2-}$ are 2060, 1890 and 1790 cm⁻¹. Interpret these. (5+4+4=13)

(4×13 =52)

- 6. a) Write briefly on the isomerization reaction involved in *cis*-and *trans*-[Co(en)₂Cl₂]⁺.
 - b) In the octahedral substitution reaction $[Co(NH_3)_5X]^{2+} + H_2O$, which ligand is expected to yield the larger rate constant for substitution $X = F^-$ or I^- ? Explain.
 - c) Explain the mechanism involved in those reactions where there is no M L
 bond cleavage. (5+4+4=13)
- 7. a) Discuss the substitution in square planar complexes with respect to the influence of solvent, leaving group and entering group.
 - b) Outline the mechanism of inner-sphere electron transfer reaction with suitable example.
 - c) What are two electron transfer reactions ? How this reaction is useful in the preparation of coordination compounds ? (5+4+4=13)